Sliding Mode Control Application in Wind Energy Conversion System Using DSTATCOM
نویسندگان
چکیده
This paper deals with sliding mode control of converter and its application to distributed generation. Sliding mode control is used to control the voltage source converter in voltage or current control mode. Modeling and control of H bridge converter system using sliding mode control is proposed. Easily implemented sliding surfaces provide prominent dynamic characteristics against changes in the load and in the input voltage. Distribution static compensator (DSTATCOM) is used to control the voltage of the bus to which it is connected to a balance sinusoid in respect of the harmonic distortion in supply or load side. A variable wind turbine generator is used to produces a variable DC voltage which is placed as input voltage source to converter of DSTATCOM. A control strategy for grid voltage control using DSTATCOM in voltage control mode has been implemented in respect of the wind variation. The results are validated using PSCAD/EMTDC simulation studies.
منابع مشابه
Wind Energy Conversion System using DFIG Controlled by Backstepping and Sliding Mode Strategies
In this paper we present the modeling and control designs for a variable-speed constant-frequency wind energy conversion system using double fed induction generator (DFIG). The aim of this paper is to design and compare two distinct control strategies to control the rotor side converter and two control strategies to control the grid side converter. For the rotor side converter (RSC), a backstep...
متن کاملFuzzy Sliding Mode Control for DFIG-based Wind Energy Conversion Optimization
This study proposes a fuzzy sliding mode control strategy to realize wind energy conversion optimization based on doubly-fed induction generator (DFIG). Its operational points in partial load zone can be electronically controlled. Chattering in wind energy conversion sliding mode control system is greatly alleviated based on fuzzy switching gain adjustment. The purposes including the maximum po...
متن کاملImprovement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC
This paper deals with the Active and Reactive Power control of double-fed induction generator (DFIG) for variable speed wind turbine. For controlling separately the active and the reactive power generated by a DFIG, field oriented control (FOC) and indirect sliding mode control (ISMC) are presented. These non linear controls are compared on the basis of topology, cost, efficiency. The main cont...
متن کاملActive and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control
This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied...
متن کاملSliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition
This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...
متن کامل